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Bethe Ansatz for an Open Heisenberg Spin 
Chain with Impurity 

Nibedita Bhattacharya ~ and A. Roy Chowdhury t 
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We have set up the algebraic Bethe ansatz equation for an open Heisenberg spin 
chain having an impurity of a different type of spin. The chain is considered to 
be open and hence the QISM approach as modified by Sklyanin is used to set 
up the equations for the Bethe ansatz. 

1. INTRODUCTION 

One of the earliest integrable nonlinear systems is the Heisenberg spin 
chain, initially studied by Onsager (1944). Later Yang (1967), Bethe 
(1931), Baxter (1972), Sutherland (1968), and many  other physicists turned 
their attention to the study of the model itself and its various generaliza- 
tions. Later, after the invention of the quantum inverse scattering method 
(QISM) (Faddeev, 1980), it became clear that there exists a close relation 
between the original coordinate-dependent Bethe ansatz, the partition 
function technique and statistical mechanics, and the approach of QISM. 
The powerful methodology of QISM made it possible to introduce 
boundary conditions other than the periodic one and the first such concrete 
formulation was put forward by Sklyanin (1988). On the other hand, from 
the practical standpoint, it is quite justified to assume that the spin chain 
may contain not only one type of atom of definite spin, but also some kind 
of impurity having a different spin (some atom with spin value not equal 
to 1/2). In thiscommunication we study an open Heisenberg spin chain of 
spin 1/2 containing an impurity of spin S. Since it is contained in a finite 
open region the periodic boundary condition is not applicable. 
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2. F O R M U L A T I O N  

The Heisenberg chain is a linear lattice of spin-l/2 objects r with k 
being the lattice position and the tr Pauli matrix. We allow the system to 
interact with an isolated impurity at the ruth lattice site. The Hamiltonians 
corresponding to the pure spin chain and the interaction with the impurity 
are 

1 
Ho ~ ~ J E  rk " ~ k + l  (1) 

2, { 
Hl=(2s+l)------~2 o,,, " S+Om+~ " s + ~  

X [6rn "8, 6m+l'S--S(S + 1)o,, " am+l]} (2) 

It has been observed that it is more convenient to start with the 
transfer matrix rather than the Hamiltonian. The construction of the 
transfer matrix is standard and rests on the consideration of the local 
vertices. 

In our case the local vertex can be written as 

2 + 1/2 + ao| (3) 
L~:(2) = i2+s+1/2 

which acts in the tensor product of the auxiliary space V0 (space of spin 
1/2) and the space V s (carrying the spin representation at the j t h  site); 2 is 
a complex parameter. On the other hand the pure spin-l/2 vertex is written 
as 

2 + 1/2 + (1/2)ao | ~: (4) U2 Loj (2) = 2 + 1 

The transfer matrix is found to be 

T(2) = Tro{LoN(2)Lou_ll/2 i/2 (2) " " " L1/2om + l(2)L~m(2) . . . .  Lo~/U(),) } = Tro z 

is the monodromy matrix. Both the vertices given in equations (3) and (4) 
are intertwined by the same quantum R-matrix, due to the relations 

= [ 1 1/2 1/2 | (#)(Lo: (2) | 1]R(2, #) (5) 

and 

R(2, #)[L~m()~ ) | 1][1 | L~,.(/t)] 

= [1 | L~m(#)][L~m(#) | IlR(2, #) (6) 
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where the R matrix is explicitly written as 

1 0 0 0 

0 (4 - ~)/( ,~ - ~ + ,7) ~/(,~ - / ~  + n) 0 
R(,L ~,) = (7) 

0 ~ / ( ~  - ~ + ~) (4 - ~,) /(~ - t, + ~) 0 

0 0 0 1 

It is now easy to prove that the matrix T(2) also satisfies 

R(2, #)[T(2) | 1111 | T(/01 = [1 | T(#)][T(2) | 11R(2, #) (8) 

which actually is the basis for the application of the QISM technique. On 
the other hand, recently an extension of this methodology was suggested by 
Sklyanin (1988), which takes into account boundary conditions other than 
the periodic o n e - - a  situation which is realized in an open spin chain. 
Another important feature of this modified approach is that now we can 
analyze the system on a finite portion of the axis. In this formalism the 
boundary conditions are introduced by two matrices K + and K -  which 
obey the following two equations (Dasgupta and Roy Chowdhury, 1992): 

R(2, p,)K ~_ (u)R(2 + # -- q)K 2_ (#) 

= K 2_ (#)R(2 + # - q ) K  ~_ (2)R(2 - #) 

R( - -4  + / . t )K~  1 (2)R( - -4  --/.t -- n)K~=(#) 

= K ~  2 ( p ) R (  - 2 - # - -  r l ) K ~ ' ( 2 ) R (  - 2 + # )  (9) 

In our present situation we have 

F22 + r / -  ~ + 
K+ 

L 0 

K_ = F 22 - q - ~-  
L 0 

o j 
-(2,~ +, i  + {+) 

o 1 - ( 2 , ~  - , 7  + ~ _ )  

Then the modified transfer matrix can be written as 

t (u )  = tr[K+ (2)u(2)] 

where 

(10) 

u(2) = T(2)K_ (2)a2 T( - 2)a2 

= FA(2) B(2)] (11) 

Lc(,~) aO.)J 
where T(2) stands for the monodromy matrix for the usual case with closed 
end. It can then be demonstrated that u(2) also satisfies 

R(212)u 1(,~ 1 )R(/712 + r/)u20~2) 

~-- u2(,~2)R(,~12 - r])u 1(21 )R()~12 ) 
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where 

U1(2) = U(2) ~) 1, U2(2) = 1 | U(2) 

212 = 21 --  22 '  2-12 = 21 + ~'2 (12) 

;to/= 2 - 2i, 2-0 = 2 + 2; 

With the explicit fo rm o f  u given in (1), we can use (12) to set up the 
commuta t ion  rules required to set up  the algebraic Bethe ansatz: 

a(# - 2)b(2 + / z  + q) 
A(2)B(#) = B(#)A(2) 

a(2 + # - r/)b(# - 2) 

b(2 + / ,  - r/)C(# -- 2) 
B(2)A(~) 

a(2 +/~ - Ob(/~ - 2) 

c ( 2  + ~ - ~) 
B(2)D(~) 

a(2 + # -- r/) 

c ( 2  + .  - , )  Fa=(2 - l,) + c ( 2  - ~,)c( .  - 2)] 
D(2)B(#) = a(2 + # - r/)b(2 - #) k b(2 - #) ~/~---2-) 

-.) (_.- 2). l C(2 + # - -  r/)C(2.-- ~ F a ( 2  -I 
x S(2)A(p) + a(2 +/~ - r/)b(2 - It) I_b0. - . )  b(p - 2)_] 

c(2 - #) C2(2 + # - ~/) - a2(2 +/~ - q) 
x B(~)A(~) + 

a()~ +/~ - q) b(2 - #)b(2 + # - q) 

a(2 - #) a2(2 + / t  - q) - c2(2 +/~ - r/) 

.) 
• B@D(,~) (13) 

The other commutation rules implied by equation (2) are not written here, 
as we will not  require them. 

. C O N S T R U C T I O N  OF B E T H E  S T A T E S  

The construct ion o f  the Bethe states starts with the observat ion that  
the Hamil tonian  can be written as 

t(2) =- Tr[K+ (2)u(2)] 

(22 + r/)(22 -- r / -  r ) 

22 

= ~A(2) - B/~(2) (say) 

22 + n + r 5(2)  
A(2) 22 

(14) 
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where we have defined 

F 
= L - e (4 )  

the algebraic adjunct of  u(4), via 

~(4) = 2 tr2 p ~ l  u(4)R12(24) 

= V-- C(24)A(4) + b(24)D(4) 

L -a(24)C(4)  

683 

- &4) ~ (15) 
~i(4) J 

- a(24)B(4) ] 
b(24)A(2) - C(24)D(4)I 

(16) 

The main purpose of defining the new monodromy matrix ~ is that in these 
new variables the commutation rules (13) can be reduced to a simpler form 

- . ~(2~ - q) B(4)A(~) A(~)B(4) = ('~ (4 # +- #)(4~)(4 _+ #)~ - ~) B(~)A(4) + 2--~ - ~,) 

#) B(4)B(~) 
2#(4 + 

(17) 
n(22 + r/) /~(4)B(#) = r/(24 + q)(2# - t/) B(4)A(#) -- B(4)/~(#) 

2#(2 +/ t )  2/~(4 #) 

+ (4 - .  + ~)(a + ~ + ~) B(U)Z~(4) 
(4 + ~)(4 - . )  

We now assume the existence of a vacuum state, which in the present case 
can be represented as 

e s 10) - - l e l / 2 ) |  �9 . | 1 7 4  m,s)(~" . . |  =) (18) 

e s where le~/z) is the vacuum vector corresponding to spin 1/2 and I ,,.s) is 
the same for the spin-s impurity. With this structure of the lowest state ]0) 
we easily observe that 

A(4)t0 ) = (i4 + 1)N(i2 + 1/2 + S)I0 ) 

D(4) ]0) = (i4)u(i2 + 1/2 -- s)10 ) (19) 

c(4) Io) = o 

and the M-particle excitation is constructed by B(2;) 

M 
[q'(4, . . .  4 ) ) - -  ]-I B(L)[0)  (20) 

•=1 
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From the definition of ~(2) we can at once deduce 

/~0~)[0) = (22 - t / ) (22  + n + 4 - ) ( - / 2  + 1)N( - 14 + 1/2 + s) 

x (-i2)N(i2 + 1 / 2 -  s)[0) (21) 

A(2)t0 ) = --(24 -- ~/-- 4-  )(/2 +/)N(i2 + 1/2 + s)(--/2) N 

x (-- /2 + 1/2- s)[0) 
Now operating with t(2) given in equation (14) on IW(21... 2M)) and 

using the commutation rules (17) to evaluate the unwanted terms, we get 

(22, + q + 4-)( - - i2 i  + 1)M(--i,~, + 1/2 + s)(i2,)M(i2~ + 1 / 2 -  S) 
(22~ -- ~/-- 4_)(i2, + 1)~(i2~ + 1/2 + s)( - i2;)m( -i2~ + 1/2 -- s) 

(22; - n - 4+ ) ~I (2U - q)(~j - q) 
- (24; + n + 4 +  )~=, (2tj + ~  (22) 

j # i  

This is the coupled set of equations for the momenta 2; (i = 1 . . . . .  M). The 
eigenvalue of the corresponding state [~(21 �9 �9 �9 2M)) is given as 

1 (  2@0)[ f i  1 Em= ~ 1 + (220 - n - 4+ ) (4o; - q)(.~o. - q) 
i=1 

x (i2o + 1) M /20 + ~ + (220 + n + 4+ ) 

with N 
D = 1-I 2oi~oi 

i=1 

4. INTEGRAL EQUATION 
From the form of equation (22) it is quite clear that it is impossible to 

solve it explicitly. What is usually done is to convert (22) into an integral 
equation for the density of the eigenvalues 2; in the interval (2.  hi + d2~) as 
M ~ oo. For this we take the logarithm of both sides of (22) and obtain 

l n ( 1 - i 2 / ~  lnF(_s+ 1 / 2 + i 2 i ) ( - s + 1 / 2 - - i 2 i )  
m \ l + i 2 i ] =  L ( - i 2 i + l / 2 + s ) ( i 2 ~ + l / 2 - s )  

, [ - ( 2 2 , - q - 4 + ) ( 2 2 , - t / - 4 - 1 1  
+ 'n[ zg, 7 q Y E  )(24, 7 t/7 4_ 

k/j--, m ln (~  _ , )  
+ i= ~1 In ~ + .XA= \2o+q.] 

i • j  i # j  

(24) 
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Let us now set 

1 I 1 2rm; 4,(~;) = ~  ,-I-%) + z(,Z,) +y_., {o(.z~,) +o(2, :3}  + - f i -  
J 

where the functions qS, qJ, Z, and 0 are defined as follows: 

/1  - i2i\  

1 [-(i2; + 1/2 + s)( --i2, + 1/2 - s ) ]  
~(2i)  = n . . . . . . .  

L(-v . ,  + 1/2 + s)(i~, + 1/2 -~ _1 

, F(2,z, - ~ - g+ )(2,t, - rt - r  
z(*,)= , n L ~ 7 ~  +)(2,~,7.u _1 

(25) 

Changing i to i + 1 in equation (24) and subtracting (24) from the new 
equation we get (after proceeding to the limit N--* oo) 

d~(,t) I -  dA - + p(2')K(2 -- 2') d2' + p(A)g(2) 

where the kernel K is given by 

K = d [O(x - x ' )  + O(x + x')]  

and g is defined by 
d~P 

g = 2r~ + ~ x  + dd-~z x 

5. DISCUSSION 

In our above analysis we have constructed the algebraic Bethe ansatz 
for a Heisenberg spin chain with impurity of a different spin but without 
the usual periodic boundary condition. The integral equation derived for 
the density of  the eigenvalues is of Fredholm type and as such can be 
solved by usual methods. 
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